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A B S T R A C T   

A novel Li3Mg4NbO8 compound was fabricated through the process of solid-state reaction. The crystal structure, 
sinterability and microwave dielectric properties of the Li3Mg4NbO8 ceramics were investigated. XRD refinement 
and Raman spectra results ascertained that the Li3Mg4NbO8 compound crystallized into an orthorhombic 
Li3Mg2NbO6-like structure with space group Fddd. The εr value was strongly impacted by the relative density and 
average ionic polarization. The Q × f value was mainly affected by the relative density and average grain size. 
The Li3Mg4NbO8 ceramics sintered at 1150 ℃ showed outstanding microwave dielectric performance: 
εr = 13.8 ± 0.14, Q × f = 103 400 ± 3500 GHz (at 9.6 GHz), τf = − 36.0 ± 1 ppm/℃. Additionally, the bond 
characteristics were calculated for a better understanding of the structure-property correlation for Li3Mg4NbO8 
ceramics.   

1. Introduction 

As an important member of the functional materials, microwave 
dielectric materials have been intensively investigated since their 
intriguing dielectric performance [1]. The development of 5 G to the 
millimeter wave region has boosted the need for microwave dielectric 
ceramics with low permittivity (εr) [2,3]. Additionally, as considering 
the practical applications of these materials, it is essential that the 
candidate dielectric materials have the features of high quality factor 
(Q × f) as well as near-zero temperature coefficient of resonant fre
quency (τf) value [4–6]. The above three basic characteristics are well 
known to impact different performance factors of components: (i) low εr 
decreases signal latency, (ii) high Q × f suppresses signal damping, and 
(iii) a near-zero τf value improves temperature stability. Furthermore, 
the rapid development of millimeter-wave communication boosts the 
construction of ultra-large-scale 5 G base stations, new microwave 
dielectric ceramics with superior performance are urgently explored to 
address these needs [7–9]. 

Since the early 1980s, tremendous research has been carried out on 
the compounds and solid solutions in the Li2O-MgO-Nb2O5 system 

[10–13]. Two ternary compounds (Li3Mg2NbO6, and Li3MgNbO5) have 
been reported. The Li3Mg2NbO6-based ceramics have attracted consid
erable research attention, which is due to their fascinating dielectric and 
luminescence characteristics [14–23]. Recently, Li et al. firstly reported 
the crystal structure and dielectric performance (εr = 16.2, Q × f = 96 
796 GHz, τf = -24.8 ppm/̊C) of Li3MgNbO5 ceramics [13]. More 
recently, our group successfully fabricated a new compound of 
Li3Mg4NbO8, which exhibited the same crystal structure as Li3Mg2NbO6 
[10]. However, the microwave dielectric properties of Li3Mg4NbO8 have 
not been reported so far. 

In this work, the microstructure and microwave dielectric properties 
of Li3Mg4NbO8 ceramics were systematically studied. It is well known 
that microwave dielectric properties are highly dependent on the crystal 
structure of ceramics, which are particularly explained by the chemical 
bond theory [24–27]. Therefore, inherent mechanism influencing the 
microwave dielectric properties of Li3Mg4NbO8 ceramics was further 
investigated based on the Rietveld refinement and complex chemical 
bond theory. 
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2. Experimental procedure 

Li3Mg4NbO8 ceramics was prepared by the conventional solid-state 
reaction process. Nb2O5 (Guo-Yao Co. Ltd., 99.99 %, Shanghai, 
China), Li2CO3 (Guo-Yao Co. Ltd., 98.0 %, Shanghai, China), and MgO 
(Mountain development center, 99.99 %, Beijing, China) were employed 
as raw materials. According to formula of Li3Mg4NbO8, Li2CO3, Nb2O5 
and MgO were weighed precisely, and then ground for 8 h using zirconia 
balls and ethanol as grinding media and solvent, respectively. The milled 
powders were dried in an oven under 80 ℃, calcined under 1000 ℃ for 
4 h, and then re-ball milled for 8 h. After drying, the powders were 
mixed with 5 wt % PVA, granulated and sieved with an 80-mesh screen. 
The granulated powders were pressed into green discs (Ф10 × 5 mm). 
After de-binding at 500 ℃ for 2 h, the pellets were sintered at 
1075–1175 ℃ for 5 h in air. 

The phase structure was identified via the X-ray diffraction (XRD, 
Smartlab, Japan), using CuKa1 radiation under the condition of 40 kV 

and 100 mA. The specimens were scanned in the range of 10− 100◦, with 
a step size of 0.01◦ and a count time of 2 s. Rietveld refinement of the 
XRD data was undertaken by the GSAS-EXPGUI software [28]. The 
cross-sections of the sintered samples were ground using abrasive papers 
and polished with a 2.5 μm diamond spray polishing agent, followed by 
a thermal etching at temperatures 100 ◦C below the sintering temper
atures. The microstructure was examined by a scanning electron mi
croscopy (SEM, Hitachi, Tokyo, Japan), and the average grain size was 
calculated using the image analysis software (Nano Measurer 1.2). 
Ambient Raman spectra (100− 1000 cm− 1) were collected using a 
Raman spectrometer (Jobin Yvon, Longjumeau, France) equipped with a 
He-Ne laser (514 nm) and an output of 30 mW, and the peak positions 
were analyzed by a Peakfit Demo software. Archimedes’ principle was 
carried out to determine the bulk densities. The εr and Q × f values of 
samples were tested using a Rohde & Schwarz ZVB20 vector network 
analyzer under 9.0–10.0 GHz by the TE01δ mode using a cavity. The τf 
value for samples was calculated by the following formula: 

Fig. 1. (a) Rietveld refined XRD patterns, (b) the zoomed (111) peaks for Li3Mg4NbO8 ceramics sintered at different temperatures, (c) schematic crystal structure 
of Li3Mg4NbO8. 

Table 1 
Refinement parameters, reliability factors, and ρtheo of Li3Mg4NbO8 ceramics with different sintering temperatures.  

T (oC) a (Å) b (Å) c (Å) cell volume (Å3) ρtheo(g/cm3) Rp(%) Rwp(%) 

1075 5.8993(5) 8.5427(6) 17.7262(1) 893.3280(3) 3.782 8.90 13.27 
1100 5.8997(5) 8.5441(7) 17.7368(1) 894.0801(4) 3.779 9.54 14.31 
1125 5.9017(5) 8.5452(7) 17.7385(1) 894.5891(4) 3.777 9.15 13.83 
1150 5.8962(2) 8.5390(2) 17.7260(5) 892.4578(3) 3.786 9.51 14.70 

T: sintering temperature; Rwp: the reliability factor of weighted patterns; Rp: the reliability factor of patterns. 
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τf =
(f2 − f1) × 106

f1 × (80 − 20)
(1)  

in which f1 and f2 is the resonant frequency measured at 20 ℃ and 80 ℃. 

3. Results and discussion 

Fig. 1(a) displays the Rietveld refined XRD patterns of the 
Li3Mg4NbO8 ceramics sintered at different temperatures, the corre
sponding refined results are listed in Table 1. Rietveld refinement has 
been carried out based on an orthorhombic Li3Mg2NbO6 structure 
(JCPDS 86-0346) as the initial model and yielded in good fits. As shown 
in Fig. 1(a), the diffraction peaks for all specimens matched well with 
the standard pattern of Li3Mg2NbO6, indicating that Li3Mg4NbO8 be
longs to the orthorhombic structure with a Fddd space group. As illus
trated in Fig. 1(b), the main diffraction peak (111) initially shifted 
towards a lower angle and then to a higher angle with the increase of 
sintering temperature. The main diffraction peak (111) is relevant to the 
long-range ordering as reported by Tang et al. [22]. The schematic 
crystal structure of the Li3Mg4NbO8 compound is shown in Fig. 1(c), 
which exhibits a partially ordered rock salt superstructure with six for
mula units per unit cell, where Nb atoms locate at 8a and Li/Mg atoms 
locate at 8b and 16 g Wyckoff sites separately. There are four types of 
oxygen octahedra in Li3Mg4NbO8, and the isolated NbO6 ordering 
octahedra share edges with 12 adjacent (Li/Mg)O6 partially ordering 
octahedra [12]. Table 1 lists the refinement parameters of the 
Li3Mg4NbO8 ceramics under various sintering temperatures. Note that 
all the Rp and Rwp values were lower than 15 % and Rp < Rwp, indi
cating that the obtained refinement data were reliable. As observed in 
Table 1, the lattice parameters and cell volume increased firstly and then 
decreased, which confirmed the above shift of the diffraction peak 
(111). 

Fig. 2 presents the typical SEM micrographs of polished and thermal 
etched cross-sections of Li3Mg4NbO8 samples sintered at different tem
peratures. The average grain size and bulk density are given in the insets 
of Fig. 2. The average grain size increased from ~2.76 μm to ~3.84 μm 
with increasing sintering temperature from 1075 ℃ to 1150 ℃, and then 

decreased to ~2.20 μm for sample sintered at 1175 ℃. For specimen 
sintered at 1150 ℃, a dense and uniform microstructure was achieved, 
as seen in Fig. 2(c). However, partial melting of grains along with un
even microstructure was observed due to the over-sintering at high 
temperature, leading to the decline of bulk density, as shown in Fig. 2 
(d). 

The relative density and εr for Li3Mg4NbO8 ceramics as a function of 
sintering temperature are shown in Fig. 3. With the increase of sintering 
temperature, the relative density was found to increase rapidly, which 
achieved its maximum value at 1150 ℃ and descended slightly there
after, in consistence with the microstructure (Fig. 2). It is well known 
that the εr of single-phase ceramics is mainly dominated by the relative 
density and average ionic polarization (αtheo/Vm) [29]. As shown in 
Fig. 3, with the increase of sintering temperature, the εr firstly increased 
from 13.1 ± 0.15 to the maximum value of 14.0 ± 0.13 and then 
decreased to 13.7 ± 0.15. The improvement in εr of Li3Mg4NbO8 ce
ramics could be attributed to the enhancement in relative density, while 

Fig. 2. Typical SEM micrographs, grain size distribution and bulk density of Li3Mg4NbO8 sintered at different temperatures: (a) 1075 ℃, (b) 1100 ℃, (c) 1150 ℃, (d) 
1175 ℃. 

Fig. 3. Changes in relative density and εr of Li3Mg4NbO8 ceramics as a function 
of sintering temperature. 
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the decrease in εr could be attributed to the integrated factors of the 
relative density and the decreased αtheo/Vm caused by lithium volatili
zation during high temperature sintering process [30,31]. Furthermore, 
the corrected dielectric constant (εcorr) of 14.4 was calculated using the 
formula εcorr = εr(1 + 1.5p) (p denotes the fractional porosity) to exclude 
the influence of porosity for Li3Mg4NbO8 ceramics sintered at 1150 ℃. 
The theoretical dielectric constant (εth) of 14.2 was also calculated by 
the Clausius-Mosotti equation [32]. The εcorr value (14.4) was compa
rable to the εth value (14.2), and the deviation between them was less 
than 1.5 %. 

The temperature-dependent Q × f and τƒ for Li3Mg4NbO8 ceramics 
are shown in Fig. 4. Generally, both external (density, defect, impurity, 
etc.) and internal factors (vibration modes and packing fraction) have 
significant influence on the Q × f value of ceramics [33,34]. Kim et al. 
found that Q × f was positively correlated with packing fraction of ce
ramics, which was due to that a high packing fraction corresponded to a 
weak lattice vibration and thus a low loss [35]. As shown in Fig. 4(a), 
there was no positive correlation between the packing fraction and Q × f 
value, especially for the samples sintered below 1150 ℃, suggesting that 
the packing fraction was not the key factor influencing the Q × f value. 
Lowndes et al. found that relative density significantly affected Q × f of 
ceramics with single phase, because of the modified lattice vibrations 
result from the presence of pores [36]. As presented in Fig. 4(a), with the 
increase of sintering temperature from 1075 ℃ to 1150 ℃, the Q × f 
value firstly increased from 30 200 ± 3000 GHz to the maximum value 
of 103 400 ± 3500 GHz, and then decreased to 81 600 ± 4100 GHz 
with further increasing sintering temperature to 1175 ℃. Here, the 
variation in Q × f with sintering temperature was consistent with the 
fact of the relative density and average grain size, indicating that the 
Q × f value of samples was mainly determined by the relative density 
and average grain size [37]. Additionally, the data provided in Fig. 4(b) 
indicated that τf remained stable at around -36.0 ± 1 ppm/℃ at 
different sintering temperatures, which was attributed to the unchanged 
crystal structure as shown in XRD patterns and Raman spectra [38]. 

The chemical bond parameters associated with the Phillips-Van- 
Levine (P-V-L) chemical bond theory have been proved to be critical 
for impacting microwave dielectric properties [39–42]. Thus, specific 
chemical bond parameters (bond ionicity, bond energy and lattice en
ergy) of Li3Mg4NbO8 ceramics were evaluated based on the P-V-L the
ory. The complex Li3Mg4NbO8 crystals were at first decomposed into 
binary crystals according to the detailed structure information and the 
P-V-L theory: 

Li3Mg4NbO8 = Li(1)Li(2)Li(3)Mg(1)4 /

3Mg(2)4 /

3Mg(3)4 /

3NbO(1)8 /

3O(2)16 /

3

= Li(1)1 /

3O(1)4 /

9 + Li(1)1 /

3O(2)1
4 /

9 + Li(1)1 /

3O(2)2
4 /

9

+ Li(2)1 /

3O(1)4 /

9 + Li(2)1 /

3O(2)1
4 /

9 + Li(2)1 /

3O(2)2
4 /

9

+ Li(3)1 /

3O(1)2 /

9 + Li(3)2 /

3O(2)4 /

9 + Mg(1)4 /

9O(1)4 /

9

+ Mg(1)4 /

9O(2)1
4 /

9 + Mg(1)4 /

9O(2)2
4 /

9 + Mg(2)4 /

9O(1)4 /

9

+ Mg(2)4 /

9O(2)1
4 /

9 + Mg(2)4 /

9O(2)2
4 /

9 + Mg(3)4 /

9O(1)2 /

9

+ Mg(3)8 /

9O(2)4 /

9 + Nb1 /

3O(1)4 /

9 + Nb2 /

3O(2)8 /

9

(2) 

The detailed calculation process for determining chemical bond pa
rameters has been described previously [23,42]. Tables S1-S2 list the 
detailed bond ionicity, bond energy and lattice energy of Li3Mg4NbO8 
ceramics sintered at 1150 ℃, respectively. It was reported that the εr 
was positively correlated with the bond ionicity (fi) based on the formula 
(3). 

εr =
n2 − 1
1 − fi

+ 1 (3) 

According to Zhang et al., the high lattice energy corresponded to the 
high stability of the ionic crystal, and thus a high Q×f value [43]. As 
shown in Table 2, average bond ionicity (Afi) and average lattice energy 
(AUb) exhibited the same sequence: Afi(Li-O) < Afi (Mg-O) < Afi (Nb-O) 
and AUb(Li-O) < AUb(Mg-O) < AUb (Nb-O), suggesting that the Nb-O 
bond had an important effect on the εr, Q × f of Li3Mg4NbO8 ce
ramics. The same conclusion was also reported in Li3Mg2NbO6 ceramics 
[19,21]. Furthermore, the bond energy, indicating the stability of the 
crystal structure, was intimately linked to τf value [44]. As seen in 
Table 2, the average bond energy of Nb-O bond (567.31 kJ/mol) was 
much higher than that of Li-O (392.50 kJ/mol) and Mg-O 
(278.05 kJ/mol) bonds, indicating that the Nb-O bond served a vital 
function in the resulting τf value of Li3Mg4NbO8 ceramics, which agreed 
to the result in Ta5+ substituted Li3Mg2NbO6 ceramics [45]. 

4. Conclusions 

Novel Li3Mg4NbO8 ceramics were successfully fabricated by a solid- 
state reaction route. The Li3Mg4NbO8 compounds crystallized in an 
orthorhombic structure with a space group of Fddd. Dense Li3Mg4NbO8 
ceramics were obtained at 1150 ℃. The εr value was determined by the 
combined effects of the relative density and average ionic polarization. 
The Q × f value was closely related to the relative density and micro
structure. The Li3Mg4NbO8 ceramics sintered at 1150 ℃ displayed good 
microwave dielectric performance of εr = 13.8 ± 0.14, Q × f = 103 
400 ± 3500 GHz (at 9.6 GHz), τf = -36.0 ± 1 ppm/℃. P–V–L bond 
theory analysis indicated that the intrinsic microwave dielectric prop
erties of Li3Mg4NbO8 ceramics were highly dependent on the Nb–O 
bond. 
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Fig. 4. Changes in Q × f, and τf of Li3Mg4NbO8 ceramics as a function of sin
tering temperature. 

Table 2 
The average bond ionicity (Afi), average lattice energy (AUb) and average bond 
energy (AEb) of Li3Mg4NbO8 ceramics sintered at 1150 ℃.  

Bond type Afi AUb (kJ/mol) AEb (kJ/mol) 

Nb–O 89 % 10722.69 567.31 
Li–O 61 % 401.28 392.50 
Mg–O 75 % 2213.84 278.05  
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